Average Rate of Change

-The average rate of change of a quantity over a period of time is the amount of change divided by the time it takes.

Example

Find the average rate of change of $f(x)=x^{3}-x$ over $[1,3]$.

$$
\begin{aligned}
& f(1)=0 \\
& f(3)=24 \\
& \frac{f(3)-f(1)}{3-1}=\frac{24-0}{2}=12
\end{aligned}
$$

Example

From a study on the population of fruit flies in a jar two sample points are taken $P(23,150)$ and $Q(45,340)$. Use these points to find the average rate of change and the slope of the secant line $P Q$.
-There are 150 flies on day 23 and 340 on day 45 .

Average rate of change: $\frac{\Delta p}{\Delta t}=\frac{340-150}{45-23}=\frac{190}{22} \approx 8.6 \mathrm{flies} / \mathrm{day}$
-The average rate of change is also the slope of the secant line from P to Q.

Tangent to a Curve

Find the slope of the parabola $y=x^{2}$ at the point $P(2,4)$. Write an equation for the tangent line.

-We begin with a secant line through $P(2,4)$ and a nearby point $Q\left(2+h,(2+h)^{2}\right)$.
-We then write an expression for the slope of the secant line and find the limiting value of this slope as Q approaches P.

$$
\text { Secant Slope: } \begin{aligned}
\frac{\Delta y}{\Delta x} & =\frac{(2+h)^{2}-4}{h} \\
& =\frac{h^{2}+4 h+4-4}{h} \\
& =\frac{h^{2}+4 h}{h}=h+4
\end{aligned}
$$

$\lim _{Q \rightarrow P}($ secant slope $)=\lim _{h \rightarrow 0}(h+4)=4$
-The slope of the parabola at P is 4 .
-The equation of the line tangent to this point.

$$
\begin{aligned}
y-4 & =4(x-2) \\
y-4 & =4 x-8 \\
y & =4 x-4
\end{aligned}
$$

Slope of a Curve at a Point

The slope of a curve $y=f(x)$ at the point $P(a, f(a))$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided that the limit exists.

Example

Let $f(x)=\frac{1}{x}$
a) Find the slope of the curve at $x=a$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \bullet \frac{a-(a+h)}{a(a+h)}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{-h}{h a(a+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{a(a+h)}=-\frac{1}{a^{2}}
\end{aligned}
$$

b) The slope will be $-1 / 4$ if

$$
\begin{aligned}
& \frac{-1}{a^{2}}=\frac{-1}{4} \\
& a^{2}=4 \\
& a= \pm 2
\end{aligned}
$$

Normal to a Curve

Find the equation normal to the curve if $f(x)=4-x^{2}$ at $x=1$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4-(1+h)^{2}-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{4-1-2 h-h^{2}-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{4-1-2 h-h^{2}-3}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{-h(2+h)}{h}=-2 \\
& y-3=\frac{1}{2}(x-1) \\
& y=\frac{1}{2} x-\frac{1}{2}+3 \\
& y=\frac{1}{2} x+\frac{5}{2}
\end{aligned}
$$

Instantaneous Rate of Change (or speed)

-An objects instantaneous speed at any time t is the instantaneous rate of change of position with respect to time t or,

$$
\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

Example

The position function of a rock $f(t)=16 t^{2}$. The average speed of the rock over the interval between $t=1$ and $t=1+h$ seconds was

$$
\frac{f(1+h)-f(1)}{h}=\frac{16(1+h)^{2}-16(1)^{2}}{h}=\frac{16\left(h^{2}+2 h\right)}{h}=16(h+2)
$$

at $t=1$

$$
\lim _{h \rightarrow 0} 16(h+2)=32 \mathrm{ft} / \mathrm{sec}
$$

